Sokoban is a popular computer game originally created in 1982 by Hiroyuki Imabayashi at the Japanese
company Thinking Rabbit, Inc. “Sokoban” is Japanese for “warehouse keeper”. The idea is that you
are a warehouse keeper trying to push boxes to their proper locations in a warehouse. The following
picture depicts the game.

The goal of the game is to help the warehouse keeper to
push the boxes to their correct destinations in a crowded ware-
house, for which a top-view map is available. The drawback
is that our friend is not strong enough to lift one box over an-
other and he isn’t strong enough to pull them either. He can
only push one box at a time, two boxes at once are already
too heavy. Moreover, a passage is just as narrow as a box,
so if a box is blocking a path, he cannot go “around” it just
by squeezing himself through between the box and the wall,
he’ll need to find a clear path to reach the other side. And of
course, our friend cannot climb over boxes, either.

Therefore, in order to win this game, a player needs to
guide the warehouse keeper to move the right way through
the labyrinth of walls and boxes and to push all the boxes to
the intended target spots in the warehouse.

Sokoban maps with different levels of difficulty are avail-
able on the Internet. For instance, the above figure is given
by the following map:

##H#H
# .#
#  H#H#
#*xQ #
# $#
# #HHH#
HHH#H

The meaning of each character in this map is the following: ‘#’ denotes a wall, space denotes an
empty square, ‘.’ denotes an empty goal square, ‘$’ denotes a box on a square (a yellow box in the
picture), ‘*’ denotes a box on a goal square (a red box in the picture), ‘@’ denotes the warehouse keeper
position on an empty square, ‘+’ denotes the warehouse keeper position on a goal square.

On these maps, these are the actions that our little friend can perform:

e Move to an adjacent empty square (left, right, up, down, but not in diagonal). Each of these
actions is called a “move”.

e Push an adjacent box to an empty square (left, right, up, down, but not in diagonal). Each
of these actions is called a “push”. Remark that in order to push a box in some direction, the
destination square must be empty.

For instance, a possible way to solve the previous puzzle with 8 pushes is given in the following
9 diagrams (read them from left to right, and observe that only pushes are shown, moves are not
displayed).

#it## #### H#H## #H#H## #H#H## #H#H## #it## #it## ##t##
# .# # .# # .# # .# # .# # .# # .# # .# # x#
# HHH# #$ ##t# #$ ### #$ ### #$ ### #0Q ### #  HHH# # SHa# # O###
#xQ # #+ # #. # #.$ # #.0$ # #x $ # #*$0 # #xQ # #x #
# $# # $# # $0 # # 0 # # # # # # # # # # #
# HHH# # HHH # HHH# # HHH# # H#HH# #  HHH #  HHH# # HHH# # HHH
#it## #### #H#H## #H#H## #H#H## #H#H#H #it## #it## ##t##

In fact, there is no way to solve this sokoban map in less than 8 pushes.

Your task is to write a program that, given an integer £ and a sokoban map, indicates whether
or not it is possible to solve the game with %k or less pushes (the number of moves is not taken into
account).

Input

Input consists of zero or more test cases. Each test case consists of a line containing an integer k
followed by a sokoban map. You can assume that 1 < k < 30 and that the size of the map is equal or
smaller than 16 x 16. All lines may not have the same length. A blank line separates two consecutive
test cases.

Output

For every test case, use a separate line to print ‘YES’ if the map can be solved with k or less pushes, or
print ‘NO’ otherwise.

Sample Input

7
A
# $ @ . #
it
8

it

# .

# Hit#

#xQ #

# $#

# ###

HitHH

Sample Output

NO
YES



