
One of the most fundamental data structure problems is the dictio-
nary problem: given a set D of words you want to be able to quickly
determine if any given query string q is present in the dictionary D
or not. Hashing is a well-known solution for the problem. The idea
is to create a function h :

∑∗ → [0..n − 1] from all strings to the
integer range 0, 1, . . . , n − 1, i.e. you describe a fast deterministic
program which takes a string as input and outputs an integer be-
tween 0 and n− 1. Next you allocate an empty hash table T of size
n and for each word w in D, you set T [h(w)] = w. Thus, given a
query string q, you only need to calculate h(q) and see if T [h(q)] equals q, to determine if q is in the
dictionary. Seems simple enough, but aren’t we forgetting something? Of course, what if two words
in D map to the same location in the table? This phenomenon, called collision, happens fairly often
(remember the Birthday paradox: in a class of 24 pupils there is more than 50% chance that two of
them share birthday). On average you will only be able to put roughly

√
n-sized dictionaries into the

table without getting collisions, quite poor space usage!
A stronger variant is Cuckoo Hashing (Cuckoo Hashing was suggested by the danes R. Pagh and

F. F. Rödler in 2001). The idea is to use two hash functions h1 and h2. Thus each string maps to
two positions in the table. A query string q is now handled as follows: you compute both h1(q) and
h2(q), and if T [h1(q)] = q, or T [h2(q)] = q, you conclude that q is in D. The name “Cuckoo Hashing”
stems from the process of creating the table. Initially you have an empty table. You iterate over the
words d in D, and insert them one by one. If T [h1(d)] is free, you set T [h1(d)] = d. Otherwise if
T [h2(d)] is free, you set T [h2(d)] = d. If both are occupied however, just like the cuckoo with other
birds’ eggs, you evict the word r in T [h1(d)] and set T [h1(d)] = d. Next you put r back into the table
in its alternative place (and if that entry was already occupied you evict that word and move it to its
alternative place, and so on). Of course, we may end up in an infinite loop here, in which case we need
to rebuild the table with other choices of hash functions. The good news is that this will not happen
with great probability even if D contains up to n/2 words!

Input

On the first line of input is a single positive integer 1 ≤ t ≤ 50 specifying the number of test cases to
follow. Each test case begins with two positive integers 1 ≤ m ≤ n ≤ 10000 on a line of itself, m telling
the number of words in the dictionary and n the size of the hash table in the test case. Next follow
m lines of which the i:th describes the i:th word di in the dictionary D by two non-negative integers
h1(di) and h2(di) less than n giving the two hash function values of the word di. The two values may
be identical.

Output

For each test case there should be exactly one line of output either containing the string ‘successful
hashing’ if it is possible to insert all words in the given order into the table, or the string ‘rehash
necessary’ if it is impossible.

Sample Input

2

3 3

0 1

1 2

2 0

5 6

2 3

3 1

1 2

5 1

2 5

Sample Output

successful hashing

rehash necessary


