Let V(G) be the vertex set of a simple graph and E(G) its edge set. An Isomorphism from a simple graph G to a simple graph H is a bijection $f:V(G)\to V(H)$ such that $uv\in E(G)$ if and only if $f(u)f(v)\in E(H)$. We say, G is isomorphic to H if there is an isomorphism from G to H.

A complete graph is a simple graph whose vertices are pairwise adjacent: the unlabeled complete graph with n vertices is denoted K_n . For example, the following figure shows K_5 .

Finally, a decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Now, given a positive integer n, you are to determine if K_n decomposes into three pairwise-isomorphic subgraphs.

First line of each test case consists of a positive integer n ($n \le 100$). The end of input will be indicated by a case where n = 0. This case should not be processed.

Output

For each test case, print 'YES' if K_n can be decomposed into three pairwise-isomorphic subgraphs and 'NO' otherwise.

Constraints

• n < 100

Sample Input

4

5

0

Sample Output

YES

NO