
You have to help a group courageous peo-
ple to find the lost treasure of your coun-
try, like the movie “National Treasure
- Book of Secrets.” To discover the na-
tional treasure that courageous group has
to pass through many traps, solve many
riddles and so on.

Like the film there are four people in
the group and to reach the treasure they
have to jump on a plate that is placed
on a pillar with sharp edge at the top.
Before any of them jumps on the plate, it
is in a stable position. For simplicity you
can assume that the plate is rectangular in
shape, has equal thickness at all places, it
is solid and made of same material. Four
people of equal weight jump on the plate
at the same time but they can jump only
at some certain points of the plate. So
they cannot always jump in such a way
that the plate is stable after they jump on it. Therefore after jumping on the plate they must run and
change their position to make the plate stable again.

After jumping on the rectangular plate the four people
can run at any direction they want.

Given the shape of the plate (always
rectangular) and location of the four peo-
ple just after jumping on it, your job is
to find the minimum distance they have
to cover in total to make the plate sta-
ble again. After jumping the four people
can run towards any direction. You don’t
need to print the minimum distance, but
you need to print the final position of the
four people after covering the minimum
distance in total.

Input

The input file contains around 15000
sets of inputs. Each set is described
with 16 floating-point numbers scat-
tered in two lines. The first line con-
tains eight floating-point numbers x1,
y1, x2, y2, x3, y3, x4 and y4 (−10 ≤
x1, y1, x2, y2, x3, y3, x4, y4 ≤ 1010) that
denotes the coordinates of the four peo-

ple just after jumping on the plate. So the coordinate of the four people are (x1, y1), (x2, y2), (x3, y3)
and (x4, y4) respectively. The second line contains another eight floating-point numbers x5, y5, x6, y6,
x7, y7, x8, y8 (−10 ≤ x−5, y5, x6, y6, x7, y7, x8, y8 ≤ 1010). These eight floating-point numbers actually
denote the coordinates of the four corners of the plate in counter clockwise order. The shape of the plate
is always rectangular. You can assume that the jumping locations (x1, y1), (x2, y2), (x3, y3) and (x4, y4)
are strictly within the plate boundary and all four people have equal weight. Input is terminated by
two lines, each containing eight zeroes. All floating-point numbers in the input has twelve digits after
the decimal point. The coordinates are all in two dimensions so they actually are given to specify the
size and orientation of the plate and the location of the people with respect to the plate. So if a person
stands still on the plate and the plate moves up and down or rotates, the coordinates of the person or
coordinate of four corners of the plate does not change. In the sample input it is shown that each line
contains four floating-point numbers. But it is only for lack of horizontal space on paper. In the judge
input file there are eight floating-point numbers in each line.

Output

For each set of input produce four lines of output. Each line contains two floating-point numbers that
denote the final position of one of the four persons. The final position of the four persons should be
mentioned according to the same order given in the input and should make the plate stable. Also the
final position of all four persons must be inside (or on the boundary of) the plate as well and ensure
that the total movement made by the four persons is minimum. If there is more than one solution,
any one will do. All floating-point numbers in the output should contain 12 digits after the decimal
point. Print a blank line after output for each set. There is an special judge for this program, so small
precision error will be ignored.

Sample Input

731.637000000000 437.595000000000 296.162000000000 402.836000000000

493.625000000000 260.917000000000 526.376000000000 237.611000000000

631.933553096878 841.348627667446 158.076619219714 651.913864882162

360.066446903122 146.651372332554 833.923380780286 336.086135117837

0.000000000000 0.000000000000 0.000000000000 0.000000000000

0.000000000000 0.000000000000 0.000000000000 0.000000000000

0.000000000000 0.000000000000 0.000000000000 0.000000000000

0.000000000000 0.000000000000 0.000000000000 0.000000000000

Sample Output

715.687000000000 596.855250000000

280.212000000000 562.096250000000

477.675000000000 420.177250000000

510.426000000000 396.871250000000


