
A software development firm is willing to hire new programmers and to spend more money for hardware
and software systems in order to increase productivity in its programming divisions. For lack of a better
idea, management has defined increased productivity for a division as “incremental lines of code” that
the division produces. The company needs a resource allocation model to determine how the money and
new programmers should be divided among the divisions in order to maximize the total productivity
increase.

Each programming division is limited in how effectively it can utilize any new resources. For
example, one particular division will be able to use 0, 3, 5, or 6 new programmers effectively. (The
personnel organization within that division prevents it from being able to use 1, 2, 4, 7 or more new
programmers.) This gives 4 options for allocating new programmers to that division. There are only
3 different options for allocation of additional money to that division. Therefore, there are 12 possible
allocation scenarios in this example. For each scenario, the company has estimated the incremental
lines of code that would be produced by that division.

You must write a program that recommends a precise allocation of resources among the divisions.
For each division, your program must determine how many new programmers and how much money
should be allocated. Allocation of new programmers and money must be made to maximize the total
productivity increase — the sum of incremental lines of code over all divisions. The total number of
programmers allocated cannot exceed the total number of programmers that the company is willing to
hire. The total amount of money cannot exceed the total amount budgeted for the entire company. In
the case where there are multiple optimal solutions, your program may recommend any one of them.

Input

Input for your program consists of several allocation problems. All input data are non-negative integers.
The first 3 lines of input for each problem consists of:

d number of programming divisions (0 < d ≤ 20 except when d is the end-of-file sentinel)
p total number of new programmers
b total amount of money budgeted for new computing resources

Following those 3 lines are input records for each programming division. The first record is for
division #1, the second for division #2, etc. Each division record is organized as follows:

n number of new programmer options (0 ≤ n ≤ 10)
x1 x2 . . . xn list of new programmer options (numbers are separated by blanks)
k number of new budget options (0 ≤ k ≤ 10)
b1 b2 . . . bk cost of each new budget option (separated by blanks)
n× k table of integers the (i, j) table entry is the incremental lines of code produced for allocation

of xi new programmers and bj additional budget

It is possible to allocate 0 new programmers to any division and $0 for new hardware and software
— resulting in no increase in productivity for that division. This “null” allocation will be explicitly
shown.

Each allocation problem begins on a new line. The end of input is signified by an allocation
“problem” with 0 divisions. No input lines follow that line.

Output

Output for each problem begins with a line identifying the problem that is solved (problem #1, problem
#2, etc.). This is followed by a blank line then 3 lines that tell the total amount of money to be spent,
the total number of new programmer to be hired, and the total anticipated new productivity for an
optimal resource allocation.

Output for each division comes next. The first line identifies the division by number. The remaining
3 lines indicate the division’s budget, the number of new programmers for the division, and the ex-
pected incremental lines of code to be produced. One blank line appears between output for successive
divisions. Two blank lines appear between output for successive problems. The exact formatting of the
output is not critical, but all output must be easy to read and well-identified.

Note: A sample input file which contains one complete allocation problem is shown below. In this
problem, there are 3 programming divisions. The company is willing to hire up to 10 new programmers
and spend up to $90,000 on new computing resources. For division #1, the expenditure of $50,000 on
new computing resources and allocation of 6 new programmers would result in the production of 40,000
incremental lines of code.

Sample Input

3

10

90000

4

0 2 5 6

4

0 20000 50000 70000

0 10000 20000 50000

60000 20000 10000 40000

20000 10000 30000 40000

30000 10000 40000 30000

5

0 1 3 4 8

3

0 40000 80000

0 50000 30000

50000 40000 60000

20000 30000 50000

80000 90000 50000

30000 40000 70000

3

0 4 6

5

0 50000 30000 40000 50000

0 30000 50000 60000 30000

10000 20000 30000 40000 50000

20000 30000 40000 50000 60000

0

Sample Output

Optimal resource allocation problem #1

Total budget: $80000

Total new programmers: 6

Total productivity increase: 210000

Division #1 resource allocation:

Budget: $0

Programmers: 2

Incremental lines of code: 60000

Division #2 resource allocation:

Budget: $40000

Programmers: 4

Incremental lines of code: 90000

Division #3 resource allocation:

Budget: $40000

Programmers: 0

Incremental lines of code: 60000

