
Many years ago the “primary memory” of most com-
puter systems was a magnetic drum. Read/write heads
were placed so they could access data from the mag-
netic outer surface as the drum rotated along its hor-
izontal axis. The following illustration gives the basic
idea:

As the drum rotated, the data word under the
read/write head(s) could be accessed. The drum con-
tinued to rotate after an instruction was fetched. After
the execution of an instruction, the word ready to be
accessed by the read/write head(s) was typically many words away. To minimize the delay that would
occur if instructions to be executed sequentially were placed in consecutive words on the drum, designers
of these machines frequently included the next instruction’s drum address as a field in the instruction
(that is, each instruction included an explicit “next instruction” address). Then “optimizing” assem-
blers could fill in the next instruction field with the address of the first available word ready to be read
by the drum as soon as the current instruction was completed.

In this problem we want to determine the average execution times of simple programs without loops.
We will consider only a single read/write head on a single track. Assume that the words on that track
have sequential addresses numbered 1 through n. All instructions require the same length of time to
execute, specifically the same time as it takes the drum to rotate past t words. t does not include the
time to read the instruction from the drum, nor does it include the additional rotational delay that
might be required if the next instruction isn’t at the “optimum” address. However, these factors must
be included in calculating the average execution time.

There are three types of instructions: terminal, conditional and unconditional. Terminal instructions
don’t have a “next instruction” address, since they terminate the execution of a program. Conditional
instructions have two “next instruction” addresses, and unconditional instructions have only one “next
instruction” address.

The execution time of a program run is the time taken from beginning to read the first instruction
until the terminal instruction has executed. To calculate the average execution time of a program, every
possible run time is weighted (multiplied) by the probability of the run. We assume equal probability
of taking each path of a branch in a conditional instruction. The sum of all weighted run times is the
average execution time of the program.

Input

The input consists of a number of test cases. The input for each test case begins with a line containing
integer values for n (1 < n < 50) and t (0 < t < n). This line is followed by a sequence of lines each
of which contains integers representing an instruction address and zero, one, or two branch addresses.
Specifically, for each instruction there is a location (between 1 and n), the number of “next instruction”
addresses (0 for a terminal instruction, 1 for an unconditional instruction, and 2 for a conditional
instruction), and that many branch addresses. The last instruction is followed by 0 on a line by itself.
The input set is terminated by values of 0 for both n and t.

Output

For each test case, print the case number (they are numbered sequentially starting with 1) and the
average execution time for the program. Execution times must be accurate to and displayed with four
fractional digits.

Assumptions:

• At the beginning of each test case the drum is positioned so that the instruction at location 1 is
about to be read.

• Each program begins execution with the word in location 1.

• The time to read an instruction is one time unit.

• There will always be at least one terminal instruction, but there may be several.

Sample Input

10 5

1 0

0

10 5

1 1 6

6 0

0

10 5

1 1 7

7 0

0

10 5

1 2 7 8

7 0

8 0

0

10 6

8 0

7 1 3

3 0

1 2 7 8

0

0 0

Sample Output

Case 1. Execution time = 6.0000

Case 2. Execution time = 21.0000

Case 3. Execution time = 12.0000

Case 4. Execution time = 12.5000

Case 5. Execution time = 26.5000


