
An Ackermann function has the characteristic that the length of the sequence of numbers generated
by the function cannot be computed directly from the input value. One particular integer Ackermann
function is the following:

Xn+1 :=

{
Xn

2 if Xn is even
3Xn + 1 if Xn is odd

This Ackermann has the characteristic that it eventually converges on 1. A few examples follow
in which the starting value is shown in square brackets followed by the sequence of values that are
generated, followed by the length of the sequence in curly braces:

[10] 5 16 8 4 2 1 {6}
[13] 40 20 10 5 16 8 4 2 1 {9}
[14] 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 {17}
[19] 58 29 88 44 22 ... 2 1 {20}
[32] 16 8 4 2 1 {5}
[1] 4 2 1 {3}

Input
Your program is to read in a series of pairs of values that represent the first and last numbers in a closed
sequence. For each closed sequence pair determine which value generates the longest series of values
before it converges to 1. The largest value in the sequence will not be larger than can be accomodated
in a 32-bit Pascal LongInt or C long. The last pair of values will be ‘0’, ‘0’.

Output
The output from your program should be as follows:

Between L and H, V generates the longest sequence of S values.

Where:
L = the lower boundary value in the sequence
H = the upper boundary value in the sequence
V = the first value that generates the longest sequence, (if two or more values generate the longest

sequence then only show the lower value)
S = the length of the generated sequence.

In the event that two numbers in the interval should both produce equally long sequences, report
the first.

Sample Input
1 20

35 55
0 0

Sample Output
Between 1 and 20, 18 generates the longest sequence of 20 values.
Between 35 and 55, 54 generates the longest sequence of 112 values.


