MIDI (Musical Instrument Digital Interface) is a standard for transmitting musical performance data
between devices. With MIDI, each event of a performance (e.g., pressing or releasing a key of a piano)
is encoded in a message. A typical MIDI message essentially consists of a code and a note, and says
that a given key (corresponding to a given note) was pressed (the code NoteOn) or released (NoteOff
code).

If we register all the events of a performance and associate a convenient time stamp with them,
we will be able to reproduce the performance later with precision. We may also make many other
things, like editing the data or producing a score in standard, human readable, music notation. This
last application will be our focus: we want to prepare performance data stored in a file so that the
production of a score becomes easy.

Figure 1 presents an example of a performance (4 notes, 8 events) and the corresponding data, in
the form jcode, note, time — stamp,,. The time stamp is represented by the triple jmeasure:beat:tickj,.
To make things simpler, we will consider that a measure is a positive integer and has always 4 beats
(numbered 1 to 4) and each beat has 480 ticks (numbered 0 to 479).

NoteOn, 35, 23:1:0
NoteOn, 52, 23:1:0

52 :
NoteOn, 43, 23:2:0 —— :
NoteOff, 52, 23:3:0 : : 1 : :
NoteOff, 35, 23:4:0 : 43 :
- S
NoteOn, 35, 24:1:0 M 9
NoteOff, 43, 24:1:0 E 35 E 35
NOteOff’ 35’ 24:2:0 — —
This performance may be easily converted to stan- : : i
dard music notation, as all the events occur at the exact = = = =

beginning of a beat (tick 0). The same would happen if E 5

they occurred in points corresponding to subdivisions

of the beat that match certain musical rhythm sym- Figure 1

bols. To simplify, we will consider divisions of the beats in 2, 4 and 8 parts as corresponding to legal
musical notation; thus, if the events occur in ticks like 60, 240 or 420, the production of the score will
be possible.

23:1:0
23:=2:0

24:
2

The events in Figure 1, however, could hardly be produced by an human. Humans can’t be so
precise: their performances have subtle “imprecisions” in timing and in other parameters. These
imprecisions make a direct production of a score virtually impossible.

Figure 2 represents a possible human performance.

NoteOn, 35, 23:1:006 : 52 :

NoteOn, 52, 23:1:017 :

NoteOn, 43, 23:2:010 : :

NoteOff, 52, 23:3:015 : 43—:
NoteOff, 35, 23:3:252 : :

NoteOn, 35, 23:4:473 : 35 i 35
NoteOn, 33, 23:4:478 : =
NoteOff, 43, 24:1:011 : 33 _
NoteOff, 33, 24:1:012 a a a a a e
NoteOff, 35, 24:2:003 E E E 5 5 ;

We may see that the times where the events occur Fi
are close to “correct” points. For instance, the fourth event occurs close to i%‘%r%@o, the fifth close to
23:3:240 and the sixth close to 24:1:000. To produce a readable score from this data, we may change
the time stamps to make them fit the closest “correct” points: this process is called Quantisation.
The short note 33 near the beginning of measure 24 (in italic) represents a special case: after
quantisation, its duration becomes zero. We will filter notes in these conditions.

Make a program that, given a performance consisting of a sequence of no more than 2.000 events,
produces a new sequence after quantising the data. Notes whose duration becomes zero after quantisa-
tion must be filtered out. If a time stamp is equally close to two different correct points, quantise it to
the upper point (for example, “23 1 30” becomes “23 1 60”). The program should be able to process
several performances each time it runs.

Input

The input file represents several performances. Input for each performance consists of a sequence of
lines, as follows:
First line: n

e where n is the number of messages of the performance

Next n lines (up to 2.000): code note m b t

e where code is the number ‘1’ for a Note On event or the number ‘0’ for a Note Off event; note is
a positive number representing a piano key; m is a positive integer representing the measure; b is
1, 2, 3 or 4 and represents the beat; ¢ is an integer between 0 and 479, and represents the tick.

The messages of a performance are ordered by increasing times.
Successive values on a line are separated by one blank. The integer ‘-1’ follows the data of the last
performance.

Output

Output should give, for each given performance, the following output:
First line: n

e where n is the number of the messages of the quantised performance
Next n lines: code note m b t

e where the meaning of the symbols is the same as for the input file
The messages of each performance must be ordered by increasing times.

The integer ‘-1’ must follow the data of the last performance.

Sample Input

10

13 2316
15223117
143 23 2 10
0 52 23 3 15
0 35 23 3 252
1 35 23 4 473
1 33 23 4 478
043 241 11
033241 12
03524 23
10

142 14 1 55
138 14 1 126
042 14 1 177
142 14 1 230
151 14 1 241
0 42 14 1 248
142 14 1 352
0 38 14 1 356
0 51 14 1 472
0 42 14 2 244
-1

Sample Output

8

132310
1522310
143 2320
0522330

0 35 23 3 240
132410
0432410
032420

8

142 14 1 60
138 14 1 120
0 42 14 1 180
1 51 14 1 240
142 14 1 360
0 38 14 1 360
05114 20

0 42 14 2 240

|
—



