Preparando MOJI

Epic Convolution

4000ms 262144K

Description:

You are given two arrays $$$a_0, a_1, \ldots, a_{n - 1}$$$ and $$$b_0, b_1, \ldots, b_{m-1}$$$, and an integer $$$c$$$.

Compute the following sum:

$$$$$$\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_i b_j c^{i^2\,j^3}$$$$$$

Since it's value can be really large, print it modulo $$$490019$$$.

Input:

First line contains three integers $$$n$$$, $$$m$$$ and $$$c$$$ ($$$1 \le n, m \le 100\,000$$$, $$$1 \le c < 490019$$$).

Next line contains exactly $$$n$$$ integers $$$a_i$$$ and defines the array $$$a$$$ ($$$0 \le a_i \le 1000$$$).

Last line contains exactly $$$m$$$ integers $$$b_i$$$ and defines the array $$$b$$$ ($$$0 \le b_i \le 1000$$$).

Output:

Print one integer — value of the sum modulo $$$490019$$$.

Sample Input:

2 2 3
0 1
0 1

Sample Output:

3

Sample Input:

3 4 1
1 1 1
1 1 1 1

Sample Output:

12

Sample Input:

2 3 3
1 2
3 4 5

Sample Output:

65652

Note:

In the first example, the only non-zero summand corresponds to $$$i = 1$$$, $$$j = 1$$$ and is equal to $$$1 \cdot 1 \cdot 3^1 = 3$$$.

In the second example, all summands are equal to $$$1$$$.

Informação

Codeforces

Provedor Codeforces

Código CF1054H

Tags

chinese remainder theoremfftmathnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 09:39:34

Relacionados

Nada ainda