Preparando MOJI
Try guessing the statement from this picture:
You are given a non-negative integer $$$d$$$. You have to find two non-negative real numbers $$$a$$$ and $$$b$$$ such that $$$a + b = d$$$ and $$$a \cdot b = d$$$.
The first line contains $$$t$$$ ($$$1 \le t \le 10^3$$$) — the number of test cases.
Each test case contains one integer $$$d$$$ $$$(0 \le d \le 10^3)$$$.
For each test print one line.
If there is an answer for the $$$i$$$-th test, print "Y", and then the numbers $$$a$$$ and $$$b$$$.
If there is no answer for the $$$i$$$-th test, print "N".
Your answer will be considered correct if $$$|(a + b) - a \cdot b| \le 10^{-6}$$$ and $$$|(a + b) - d| \le 10^{-6}$$$.
7 69 0 1 4 5 999 1000
Y 67.985071301 1.014928699 Y 0.000000000 0.000000000 N Y 2.000000000 2.000000000 Y 3.618033989 1.381966011 Y 997.998996990 1.001003010 Y 998.998997995 1.001002005