Preparando MOJI
Can the greatest common divisor and bitwise operations have anything in common? It is time to answer this question.
Suppose you are given a positive integer $$$a$$$. You want to choose some integer $$$b$$$ from $$$1$$$ to $$$a - 1$$$ inclusive in such a way that the greatest common divisor (GCD) of integers $$$a \oplus b$$$ and $$$a \> \& \> b$$$ is as large as possible. In other words, you'd like to compute the following function:
$$$$$$f(a) = \max_{0 < b < a}{gcd(a \oplus b, a \> \& \> b)}.$$$$$$
Here $$$\oplus$$$ denotes the bitwise XOR operation, and $$$\&$$$ denotes the bitwise AND operation.
The greatest common divisor of two integers $$$x$$$ and $$$y$$$ is the largest integer $$$g$$$ such that both $$$x$$$ and $$$y$$$ are divided by $$$g$$$ without remainder.
You are given $$$q$$$ integers $$$a_1, a_2, \ldots, a_q$$$. For each of these integers compute the largest possible value of the greatest common divisor (when $$$b$$$ is chosen optimally).
The first line contains an integer $$$q$$$ ($$$1 \le q \le 10^3$$$) — the number of integers you need to compute the answer for.
After that $$$q$$$ integers are given, one per line: $$$a_1, a_2, \ldots, a_q$$$ ($$$2 \le a_i \le 2^{25} - 1$$$) — the integers you need to compute the answer for.
For each integer, print the answer in the same order as the integers are given in input.
3 2 3 5
3 1 7
For the first integer the optimal choice is $$$b = 1$$$, then $$$a \oplus b = 3$$$, $$$a \> \& \> b = 0$$$, and the greatest common divisor of $$$3$$$ and $$$0$$$ is $$$3$$$.
For the second integer one optimal choice is $$$b = 2$$$, then $$$a \oplus b = 1$$$, $$$a \> \& \> b = 2$$$, and the greatest common divisor of $$$1$$$ and $$$2$$$ is $$$1$$$.
For the third integer the optimal choice is $$$b = 2$$$, then $$$a \oplus b = 7$$$, $$$a \> \& \> b = 0$$$, and the greatest common divisor of $$$7$$$ and $$$0$$$ is $$$7$$$.