Preparando MOJI

Product Oriented Recurrence

1000ms 262144K

Description:

Let $$$f_{x} = c^{2x-6} \cdot f_{x-1} \cdot f_{x-2} \cdot f_{x-3}$$$ for $$$x \ge 4$$$.

You have given integers $$$n$$$, $$$f_{1}$$$, $$$f_{2}$$$, $$$f_{3}$$$, and $$$c$$$. Find $$$f_{n} \bmod (10^{9}+7)$$$.

Input:

The only line contains five integers $$$n$$$, $$$f_{1}$$$, $$$f_{2}$$$, $$$f_{3}$$$, and $$$c$$$ ($$$4 \le n \le 10^{18}$$$, $$$1 \le f_{1}$$$, $$$f_{2}$$$, $$$f_{3}$$$, $$$c \le 10^{9}$$$).

Output:

Print $$$f_{n} \bmod (10^{9} + 7)$$$.

Sample Input:

5 1 2 5 3

Sample Output:

72900

Sample Input:

17 97 41 37 11

Sample Output:

317451037

Note:

In the first example, $$$f_{4} = 90$$$, $$$f_{5} = 72900$$$.

In the second example, $$$f_{17} \approx 2.28 \times 10^{29587}$$$.

Informação

Codeforces

Provedor Codeforces

Código CF1182E

Tags

dpmathmatricesnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 09:49:06

Relacionados

Nada ainda