Preparando MOJI

The Maximum Subtree

2000ms 262144K

Description:

Assume that you have $$$k$$$ one-dimensional segments $$$s_1, s_2, \dots s_k$$$ (each segment is denoted by two integers — its endpoints). Then you can build the following graph on these segments. The graph consists of $$$k$$$ vertexes, and there is an edge between the $$$i$$$-th and the $$$j$$$-th vertexes ($$$i \neq j$$$) if and only if the segments $$$s_i$$$ and $$$s_j$$$ intersect (there exists at least one point that belongs to both of them).

For example, if $$$s_1 = [1, 6], s_2 = [8, 20], s_3 = [4, 10], s_4 = [2, 13], s_5 = [17, 18]$$$, then the resulting graph is the following:

A tree of size $$$m$$$ is good if it is possible to choose $$$m$$$ one-dimensional segments so that the graph built on these segments coincides with this tree.

You are given a tree, you have to find its good subtree with maximum possible size. Recall that a subtree is a connected subgraph of a tree.

Note that you have to answer $$$q$$$ independent queries.

Input:

The first line contains one integer $$$q$$$ ($$$1 \le q \le 15 \cdot 10^4$$$) — the number of the queries.

The first line of each query contains one integer $$$n$$$ ($$$2 \le n \le 3 \cdot 10^5$$$) — the number of vertices in the tree.

Each of the next $$$n - 1$$$ lines contains two integers $$$x$$$ and $$$y$$$ ($$$1 \le x, y \le n$$$) denoting an edge between vertices $$$x$$$ and $$$y$$$. It is guaranteed that the given graph is a tree.

It is guaranteed that the sum of all $$$n$$$ does not exceed $$$3 \cdot 10^5$$$.

Output:

For each query print one integer — the maximum size of a good subtree of the given tree.

Sample Input:

1
10
1 2
1 3
1 4
2 5
2 6
3 7
3 8
4 9
4 10

Sample Output:

8

Note:

In the first query there is a good subtree of size $$$8$$$. The vertices belonging to this subtree are $$${9, 4, 10, 2, 5, 1, 6, 3}$$$.

Informação

Codeforces

Provedor Codeforces

Código CF1238F

Tags

dfs and similardpgraphstrees

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 09:53:04

Relacionados

Nada ainda