Preparando MOJI
Consider the set of all nonnegative integers: $$${0, 1, 2, \dots}$$$. Given two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^4$$$). We paint all the numbers in increasing number first we paint $$$0$$$, then we paint $$$1$$$, then $$$2$$$ and so on.
Each number is painted white or black. We paint a number $$$i$$$ according to the following rules:
In this way, each nonnegative integer gets one of two colors.
For example, if $$$a=3$$$, $$$b=5$$$, then the colors of the numbers (in the order from $$$0$$$) are: white ($$$0$$$), black ($$$1$$$), black ($$$2$$$), white ($$$3$$$), black ($$$4$$$), white ($$$5$$$), white ($$$6$$$), black ($$$7$$$), white ($$$8$$$), white ($$$9$$$), ...
Note that:
Your task is to determine whether or not the number of nonnegative integers colored black is infinite.
If there are infinitely many nonnegative integers colored black, simply print a line containing "Infinite" (without the quotes). Otherwise, print "Finite" (without the quotes).
The first line of input contains a single integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases in the input. Then $$$t$$$ lines follow, each line contains two space-separated integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^4$$$).
For each test case, print one line containing either "Infinite" or "Finite" (without the quotes). Output is case-insensitive (i.e. "infinite", "inFiNite" or "finiTE" are all valid answers).
4 10 10 1 10 6 9 7 3
Infinite Finite Infinite Finite