Preparando MOJI
Recently a lot of students were enrolled in Berland State University. All students were divided into groups according to their education program. Some groups turned out to be too large to attend lessons in the same auditorium, so these groups should be divided into two subgroups. Your task is to help divide the first-year students of the computer science faculty.
There are $$$t$$$ new groups belonging to this faculty. Students have to attend classes on three different subjects — maths, programming and P. E. All classes are held in different places according to the subject — maths classes are held in auditoriums, programming classes are held in computer labs, and P. E. classes are held in gyms.
Each group should be divided into two subgroups so that there is enough space in every auditorium, lab or gym for all students of the subgroup. For the first subgroup of the $$$i$$$-th group, maths classes are held in an auditorium with capacity of $$$a_{i, 1}$$$ students; programming classes are held in a lab that accomodates up to $$$b_{i, 1}$$$ students; and P. E. classes are held in a gym having enough place for $$$c_{i, 1}$$$ students. Analogically, the auditorium, lab and gym for the second subgroup can accept no more than $$$a_{i, 2}$$$, $$$b_{i, 2}$$$ and $$$c_{i, 2}$$$ students, respectively.
As usual, some students skip some classes. Each student considers some number of subjects (from $$$0$$$ to $$$3$$$) to be useless — that means, he skips all classes on these subjects (and attends all other classes). This data is given to you as follows — the $$$i$$$-th group consists of:
There is one more type of students — those who don't attend any classes at all (but they, obviously, don't need any place in auditoriums, labs or gyms, so the number of those students is insignificant in this problem).
Your task is to divide each group into two subgroups so that every auditorium (or lab, or gym) assigned to each subgroup has enough place for all students from this subgroup attending the corresponding classes (if it is possible). Each student of the $$$i$$$-th group should belong to exactly one subgroup of the $$$i$$$-th group; it is forbidden to move students between groups.
The first line contains one integer $$$t$$$ ($$$1 \le t \le 300$$$) — the number of groups.
Then the descriptions of groups follow. The description of the $$$i$$$-th group consists of three lines:
It is guaranteed that the total number of students in all groups is not greater than $$$3000$$$.
For each group, print the result of its division as follows:
3 9 4 13 1 10 3 1 2 3 4 5 6 7 9 4 13 1 10 3 2 1 3 4 5 6 7 1 2 3 4 5 6 0 0 0 0 0 0 0
1 1 3 4 2 0 7 -1 0 0 0 0 0 0 0