Preparando MOJI
You are given an array $$$a$$$ consisting of $$$n$$$ integers. In one move, you can jump from the position $$$i$$$ to the position $$$i - a_i$$$ (if $$$1 \le i - a_i$$$) or to the position $$$i + a_i$$$ (if $$$i + a_i \le n$$$).
For each position $$$i$$$ from $$$1$$$ to $$$n$$$ you want to know the minimum the number of moves required to reach any position $$$j$$$ such that $$$a_j$$$ has the opposite parity from $$$a_i$$$ (i.e. if $$$a_i$$$ is odd then $$$a_j$$$ has to be even and vice versa).
The first line of the input contains one integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the number of elements in $$$a$$$.
The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$1 \le a_i \le n$$$), where $$$a_i$$$ is the $$$i$$$-th element of $$$a$$$.
Print $$$n$$$ integers $$$d_1, d_2, \dots, d_n$$$, where $$$d_i$$$ is the minimum the number of moves required to reach any position $$$j$$$ such that $$$a_j$$$ has the opposite parity from $$$a_i$$$ (i.e. if $$$a_i$$$ is odd then $$$a_j$$$ has to be even and vice versa) or -1 if it is impossible to reach such a position.
10 4 5 7 6 7 5 4 4 6 4
1 1 1 2 -1 1 1 3 1 1