Preparando MOJI

Sum of Digits

2000ms 524288K

Description:

Let $$$f(x)$$$ be the sum of digits of a decimal number $$$x$$$.

Find the smallest non-negative integer $$$x$$$ such that $$$f(x) + f(x + 1) + \dots + f(x + k) = n$$$.

Input:

The first line contains one integer $$$t$$$ ($$$1 \le t \le 150$$$) — the number of test cases.

Each test case consists of one line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le n \le 150$$$, $$$0 \le k \le 9$$$).

Output:

For each test case, print one integer without leading zeroes. If there is no such $$$x$$$ that $$$f(x) + f(x + 1) + \dots + f(x + k) = n$$$, print $$$-1$$$; otherwise, print the minimum $$$x$$$ meeting that constraint.

Sample Input:

7
1 0
1 1
42 7
13 7
99 1
99 0
99 2

Sample Output:

1
0
4
-1
599998
99999999999
7997

Informação

Codeforces

Provedor Codeforces

Código CF1373E

Tags

brute forceconstructive algorithmsdpgreedy

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:04:11

Relacionados

Nada ainda