Preparando MOJI

Row GCD

2000ms 524288K

Description:

You are given two positive integer sequences $$$a_1, \ldots, a_n$$$ and $$$b_1, \ldots, b_m$$$. For each $$$j = 1, \ldots, m$$$ find the greatest common divisor of $$$a_1 + b_j, \ldots, a_n + b_j$$$.

Input:

The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \leq n, m \leq 2 \cdot 10^5$$$).

The second line contains $$$n$$$ integers $$$a_1, \ldots, a_n$$$ ($$$1 \leq a_i \leq 10^{18})$$$.

The third line contains $$$m$$$ integers $$$b_1, \ldots, b_m$$$ ($$$1 \leq b_j \leq 10^{18})$$$.

Output:

Print $$$m$$$ integers. The $$$j$$$-th of them should be equal to GCD$$$(a_1 + b_j, \ldots, a_n + b_j)$$$.

Sample Input:

4 4
1 25 121 169
1 2 7 23

Sample Output:

2 3 8 24

Informação

Codeforces

Provedor Codeforces

Código CF1458A

Tags

mathnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:09:09

Relacionados

Nada ainda