Preparando MOJI
Polycarp was gifted an array $$$a$$$ of length $$$n$$$. Polycarp considers an array beautiful if there exists a number $$$C$$$, such that each number in the array occurs either zero or $$$C$$$ times. Polycarp wants to remove some elements from the array $$$a$$$ to make it beautiful.
For example, if $$$n=6$$$ and $$$a = [1, 3, 2, 1, 4, 2]$$$, then the following options are possible to make the array $$$a$$$ array beautiful:
Help Polycarp determine the minimum number of elements to remove from the array $$$a$$$ to make it beautiful.
The first line contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow.
The first line of each test case consists of one integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the length of the array $$$a$$$.
The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$) — array $$$a$$$.
It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
For each test case, output one integer — the minimum number of elements that Polycarp has to remove from the array $$$a$$$ to make it beautiful.
3 6 1 3 2 1 4 2 4 100 100 4 100 8 1 2 3 3 3 2 6 6
2 1 2