Preparando MOJI

Short Task

2000ms 524288K

Description:

Let us denote by $$$d(n)$$$ the sum of all divisors of the number $$$n$$$, i.e. $$$d(n) = \sum\limits_{k | n} k$$$.

For example, $$$d(1) = 1$$$, $$$d(4) = 1+2+4=7$$$, $$$d(6) = 1+2+3+6=12$$$.

For a given number $$$c$$$, find the minimum $$$n$$$ such that $$$d(n) = c$$$.

Input:

The first line contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$). Then $$$t$$$ test cases follow.

Each test case is characterized by one integer $$$c$$$ ($$$1 \le c \le 10^7$$$).

Output:

For each test case, output:

  • "-1" if there is no such $$$n$$$ that $$$d(n) = c$$$;
  • $$$n$$$, otherwise.

Sample Input:

12
1
2
3
4
5
6
7
8
9
10
39
691

Sample Output:

1
-1
2
3
-1
5
4
7
-1
-1
18
-1

Informação

Codeforces

Provedor Codeforces

Código CF1512G

Tags

brute forcedpmathnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:13:23

Relacionados

Nada ainda