Preparando MOJI
Phoenix has collected $$$n$$$ pieces of gold, and he wants to weigh them together so he can feel rich. The $$$i$$$-th piece of gold has weight $$$w_i$$$. All weights are distinct. He will put his $$$n$$$ pieces of gold on a weight scale, one piece at a time.
The scale has an unusual defect: if the total weight on it is exactly $$$x$$$, it will explode. Can he put all $$$n$$$ gold pieces onto the scale in some order, without the scale exploding during the process? If so, help him find some possible order.
Formally, rearrange the array $$$w$$$ so that for each $$$i$$$ $$$(1 \le i \le n)$$$, $$$\sum\limits_{j = 1}^{i}w_j \ne x$$$.
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases.
The first line of each test case contains two integers $$$n$$$ and $$$x$$$ ($$$1 \le n \le 100$$$; $$$1 \le x \le 10^4$$$) — the number of gold pieces that Phoenix has and the weight to avoid, respectively.
The second line of each test case contains $$$n$$$ space-separated integers $$$(1 \le w_i \le 100)$$$ — the weights of the gold pieces. It is guaranteed that the weights are pairwise distinct.
For each test case, if Phoenix cannot place all $$$n$$$ pieces without the scale exploding, print NO. Otherwise, print YES followed by the rearranged array $$$w$$$. If there are multiple solutions, print any.
3 3 2 3 2 1 5 3 1 2 3 4 8 1 5 5
YES 3 2 1 YES 8 1 2 3 4 NO
In the first test case, Phoenix puts the gold piece with weight $$$3$$$ on the scale first, then the piece with weight $$$2$$$, and finally the piece with weight $$$1$$$. The total weight on the scale is $$$3$$$, then $$$5$$$, then $$$6$$$. The scale does not explode because the total weight on the scale is never $$$2$$$.
In the second test case, the total weight on the scale is $$$8$$$, $$$9$$$, $$$11$$$, $$$14$$$, then $$$18$$$. It is never $$$3$$$.
In the third test case, Phoenix must put the gold piece with weight $$$5$$$ on the scale, and the scale will always explode.