Preparando MOJI
Let's call a positive integer $$$n$$$ ordinary if in the decimal notation all its digits are the same. For example, $$$1$$$, $$$2$$$ and $$$99$$$ are ordinary numbers, but $$$719$$$ and $$$2021$$$ are not ordinary numbers.
For a given number $$$n$$$, find the number of ordinary numbers among the numbers from $$$1$$$ to $$$n$$$.
The first line contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$). Then $$$t$$$ test cases follow.
Each test case is characterized by one integer $$$n$$$ ($$$1 \le n \le 10^9$$$).
For each test case output the number of ordinary numbers among numbers from $$$1$$$ to $$$n$$$.
6 1 2 3 4 5 100
1 2 3 4 5 18