Preparando MOJI
You are given $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$. Find the maximum value of $$$max(a_l, a_{l + 1}, \ldots, a_r) \cdot min(a_l, a_{l + 1}, \ldots, a_r)$$$ over all pairs $$$(l, r)$$$ of integers for which $$$1 \le l < r \le n$$$.
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases.
The first line of each test case contains a single integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^6$$$).
It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$.
For each test case, print a single integer — the maximum possible value of the product from the statement.
4 3 2 4 3 4 3 2 3 1 2 69 69 6 719313 273225 402638 473783 804745 323328
12 6 4761 381274500335
Let $$$f(l, r) = max(a_l, a_{l + 1}, \ldots, a_r) \cdot min(a_l, a_{l + 1}, \ldots, a_r)$$$.
In the first test case,
So the maximum is $$$f(2, 3) = 12$$$.
In the second test case, the maximum is $$$f(1, 2) = f(1, 3) = f(2, 3) = 6$$$.