Preparando MOJI
You are given $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ and an integer $$$k$$$. Find the maximum value of $$$i \cdot j - k \cdot (a_i | a_j)$$$ over all pairs $$$(i, j)$$$ of integers with $$$1 \le i < j \le n$$$. Here, $$$|$$$ is the bitwise OR operator.
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases.
The first line of each test case contains two integers $$$n$$$ ($$$2 \le n \le 10^5$$$) and $$$k$$$ ($$$1 \le k \le \min(n, 100)$$$).
The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$0 \le a_i \le n$$$).
It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$.
For each test case, print a single integer — the maximum possible value of $$$i \cdot j - k \cdot (a_i | a_j)$$$.
4 3 3 1 1 3 2 2 1 2 4 3 0 1 2 3 6 6 3 2 0 0 5 6
-1 -4 3 12
Let $$$f(i, j) = i \cdot j - k \cdot (a_i | a_j)$$$.
In the first test case,
So the maximum is $$$f(1, 2) = -1$$$.
In the fourth test case, the maximum is $$$f(3, 4) = 12$$$.