Preparando MOJI
There are $$$n$$$ points and $$$m$$$ segments on the coordinate line. The initial coordinate of the $$$i$$$-th point is $$$a_i$$$. The endpoints of the $$$j$$$-th segment are $$$l_j$$$ and $$$r_j$$$ — left and right endpoints, respectively.
You can move the points. In one move you can move any point from its current coordinate $$$x$$$ to the coordinate $$$x - 1$$$ or the coordinate $$$x + 1$$$. The cost of this move is $$$1$$$.
You should move the points in such a way that each segment is visited by at least one point. A point visits the segment $$$[l, r]$$$ if there is a moment when its coordinate was on the segment $$$[l, r]$$$ (including endpoints).
You should find the minimal possible total cost of all moves such that all segments are visited.
The input consists of multiple test cases. The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Description of the test cases follows.
The first line of each test case contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n, m \le 2 \cdot 10^5$$$) — the number of points and segments respectively.
The next line contains $$$n$$$ distinct integers $$$a_1, a_2, \ldots, a_n$$$ ($$$-10^9 \le a_i \le 10^9$$$) — the initial coordinates of the points.
Each of the next $$$m$$$ lines contains two integers $$$l_j$$$, $$$r_j$$$ ($$$-10^9 \le l_j \le r_j \le 10^9$$$) — the left and the right endpoints of the $$$j$$$-th segment.
It's guaranteed that the sum of $$$n$$$ and the sum of $$$m$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
For each test case print a single integer — the minimal total cost of all moves such that all segments are visited.
2 4 11 2 6 14 18 0 3 4 5 11 15 3 5 10 13 16 16 1 4 8 12 17 19 7 13 14 19 4 12 -9 -16 12 3 -20 -18 -14 -13 -10 -7 -3 -1 0 4 6 11 7 9 8 10 13 15 14 18 16 17 18 19
5 22
In the first test case the points can be moved as follows:
The total cost of moves is $$$5$$$. It is easy to see, that all segments are visited by these movements. For example, the tenth segment ($$$[7, 13]$$$) is visited after the second move by the third point.
Here is the image that describes the first test case: