Preparando MOJI

Bridge Club

2000ms 524288K

Description:

There are currently $$$n$$$ hot topics numbered from $$$0$$$ to $$$n-1$$$ at your local bridge club and $$$2^n$$$ players numbered from $$$0$$$ to $$$2^n-1$$$. Each player holds a different set of views on those $$$n$$$ topics, more specifically, the $$$i$$$-th player holds a positive view on the $$$j$$$-th topic if $$$i\ \&\ 2^j > 0$$$, and a negative view otherwise. Here $$$\&$$$ denotes the bitwise AND operation.

You are going to organize a bridge tournament capable of accommodating at most $$$k$$$ pairs of players (bridge is played in teams of two people). You can select teams arbitrarily while each player is in at most one team, but there is one catch: two players cannot be in the same pair if they disagree on $$$2$$$ or more of those $$$n$$$ topics, as they would argue too much during the play.

You know that the $$$i$$$-th player will pay you $$$a_i$$$ dollars if they play in this tournament. Compute the maximum amount of money that you can earn if you pair the players in your club optimally.

Input:

The first line contains two integers $$$n$$$, $$$k$$$ ($$$1 \le n \le 20$$$, $$$1 \le k \le 200$$$) — the number of hot topics and the number of pairs of players that your tournament can accommodate.

The second line contains $$$2^n$$$ integers $$$a_0, a_1, \dots, a_{2^n-1}$$$ ($$$0 \le a_i \le 10^6$$$) — the amounts of money that the players will pay to play in the tournament.

Output:

Print one integer: the maximum amount of money that you can earn if you pair the players in your club optimally under the above conditions.

Sample Input:

3 1
8 3 5 7 1 10 3 2

Sample Output:

13

Sample Input:

2 3
7 4 5 7

Sample Output:

23

Sample Input:

3 2
1 9 1 5 7 8 1 1

Sample Output:

29

Note:

In the first example, the best we can do is to pair together the $$$0$$$-th player and the $$$2$$$-nd player resulting in earnings of $$$8 + 5 = 13$$$ dollars. Although pairing the $$$0$$$-th player with the $$$5$$$-th player would give us $$$8 + 10 = 18$$$ dollars, we cannot do this because those two players disagree on $$$2$$$ of the $$$3$$$ hot topics.

In the second example, we can pair the $$$0$$$-th player with the $$$1$$$-st player and pair the $$$2$$$-nd player with the $$$3$$$-rd player resulting in earnings of $$$7 + 4 + 5 + 7 = 23$$$ dollars.

Informação

Codeforces

Provedor Codeforces

Código CF1572D

Tags

flowsgraph matchingsgraphsgreedy

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:17:40

Relacionados

Nada ainda