Preparando MOJI
Fibonacci addition is an operation on an array $$$X$$$ of integers, parametrized by indices $$$l$$$ and $$$r$$$. Fibonacci addition increases $$$X_l$$$ by $$$F_1$$$, increases $$$X_{l + 1}$$$ by $$$F_2$$$, and so on up to $$$X_r$$$ which is increased by $$$F_{r - l + 1}$$$.
$$$F_i$$$ denotes the $$$i$$$-th Fibonacci number ($$$F_1 = 1$$$, $$$F_2 = 1$$$, $$$F_{i} = F_{i - 1} + F_{i - 2}$$$ for $$$i > 2$$$), and all operations are performed modulo $$$MOD$$$.
You are given two arrays $$$A$$$ and $$$B$$$ of the same length. We will ask you to perform several Fibonacci additions on these arrays with different parameters, and after each operation you have to report whether arrays $$$A$$$ and $$$B$$$ are equal modulo $$$MOD$$$.
The first line contains 3 numbers $$$n$$$, $$$q$$$ and $$$MOD$$$ ($$$1 \le n, q \le 3\cdot 10^5, 1 \le MOD \le 10^9+7$$$) — the length of the arrays, the number of operations, and the number modulo which all operations are performed.
The second line contains $$$n$$$ numbers — array $$$A$$$ ($$$0 \le A_i < MOD$$$).
The third line also contains $$$n$$$ numbers — array $$$B$$$ ($$$0 \le B_i < MOD$$$).
The next $$$q$$$ lines contain character $$$c$$$ and two numbers $$$l$$$ and $$$r$$$ ($$$1 \le l \le r \le n$$$) — operation parameters. If $$$c$$$ is "A", Fibonacci addition is to be performed on array $$$A$$$, and if it is is "B", the operation is to be performed on $$$B$$$.
After each operation, print "YES" (without quotes) if the arrays are equal and "NO" otherwise. Letter case does not matter.
3 5 3 2 2 1 0 0 0 A 1 3 A 1 3 B 1 1 B 2 2 A 3 3
YES NO NO NO YES
5 3 10 2 5 0 3 5 3 5 8 2 5 B 2 3 B 3 4 A 1 2
NO NO YES
Explanation of the test from the condition: