Preparando MOJI
You have an array $$$a$$$ of length $$$n$$$. You can exactly once select an integer $$$len$$$ between $$$1$$$ and $$$n - 1$$$ inclusively, and then sort in non-decreasing order the prefix of the array of length $$$len$$$ and the suffix of the array of length $$$n - len$$$ independently.
For example, if the array is $$$a = [3, 1, 4, 5, 2]$$$, and you choose $$$len = 2$$$, then after that the array will be equal to $$$[1, 3, 2, 4, 5]$$$.
Could it be that after performing this operation, the array will not be sorted in non-decreasing order?
There are several test cases in the input data. The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. This is followed by the test cases description.
The first line of each test case contains one integer $$$n$$$ ($$$2 \leq n \leq 10^4$$$) — the length of the array.
The second line of the test case contains a sequence of integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq 10^9$$$) — the array elements.
It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$10^4$$$.
For each test case of input data, output "YES" (without quotes), if the array may be not sorted in non-decreasing order, output "NO" (without quotes) otherwise. You can output each letter in any case (uppercase or lowercase).
3 3 2 2 1 4 3 1 2 1 5 1 2 2 4 4
YES YES NO
In the first test case, it's possible to select $$$len = 1$$$, then after operation, the array will not be sorted in non-decreasing order and will be equal to $$$[2, 1, 2]$$$.
In the second test case, it's possible to select $$$len = 3$$$, then after operation, the array will not be sorted in non-decreasing order and will be equal to $$$[1, 2, 3, 1]$$$.
In the third test case, the array will be sorted in non-decreasing order for every possible $$$len$$$.