Preparando MOJI

Marin and Anti-coprime Permutation

1000ms 262144K

Description:

Marin wants you to count number of permutations that are beautiful. A beautiful permutation of length $$$n$$$ is a permutation that has the following property: $$$$$$ \gcd (1 \cdot p_1, \, 2 \cdot p_2, \, \dots, \, n \cdot p_n) > 1, $$$$$$ where $$$\gcd$$$ is the greatest common divisor.

A permutation is an array consisting of $$$n$$$ distinct integers from $$$1$$$ to $$$n$$$ in arbitrary order. For example, $$$[2,3,1,5,4]$$$ is a permutation, but $$$[1,2,2]$$$ is not a permutation ($$$2$$$ appears twice in the array) and $$$[1,3, 4]$$$ is also not a permutation ($$$n=3$$$ but there is $$$4$$$ in the array).

Input:

The first line contains one integer $$$t$$$ ($$$1 \le t \le 10^3$$$) — the number of test cases.

Each test case consists of one line containing one integer $$$n$$$ ($$$1 \le n \le 10^3$$$).

Output:

For each test case, print one integer — number of beautiful permutations. Because the answer can be very big, please print the answer modulo $$$998\,244\,353$$$.

Sample Input:

7
1
2
3
4
5
6
1000

Sample Output:

0
1
0
4
0
36
665702330

Note:

In first test case, we only have one permutation which is $$$[1]$$$ but it is not beautiful because $$$\gcd(1 \cdot 1) = 1$$$.

In second test case, we only have one beautiful permutation which is $$$[2, 1]$$$ because $$$\gcd(1 \cdot 2, 2 \cdot 1) = 2$$$.

Informação

Codeforces

Provedor Codeforces

Código CF1658B

Tags

combinatoricsmathnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:23:27

Relacionados

Nada ainda