Preparando MOJI
Koishi is unconsciously permuting $$$n$$$ numbers: $$$1, 2, \ldots, n$$$.
She thinks the permutation $$$p$$$ is beautiful if $$$s=\sum\limits_{i=1}^{n-1} [p_i+1=p_{i+1}]$$$. $$$[x]$$$ equals to $$$1$$$ if $$$x$$$ holds, or $$$0$$$ otherwise.
For each $$$k\in[0,n-1]$$$, she wants to know the number of beautiful permutations of length $$$n$$$ satisfying $$$k=\sum\limits_{i=1}^{n-1}[p_i<p_{i+1}]$$$.
There is one line containing two intergers $$$n$$$ ($$$1 \leq n \leq 250\,000$$$) and $$$s$$$ ($$$0 \leq s < n$$$).
Print one line with $$$n$$$ intergers. The $$$i$$$-th integers represents the answer of $$$k=i-1$$$, modulo $$$998244353$$$.
2 0
1 0
4 1
0 3 6 0
8 3
0 0 0 35 770 980 70 0
Let $$$f(p)=\sum\limits_{i=1}^{n-1}[p_i<p_{i+1}]$$$.
Testcase 1:
$$$[2,1]$$$ is the only beautiful permutation. And $$$f([2,1])=0$$$.
Testcase 2:
Beautiful permutations:
$$$[1,2,4,3]$$$, $$$[1,3,4,2]$$$, $$$[1,4,2,3]$$$, $$$[2,1,3,4]$$$, $$$[2,3,1,4]$$$, $$$[3,1,2,4]$$$, $$$[3,4,2,1]$$$, $$$[4,2,3,1]$$$, $$$[4,3,1,2]$$$. The first six of them satisfy $$$f(p)=2$$$, while others satisfy $$$f(p)=1$$$.