Preparando MOJI
Cirno's perfect bitmasks classroom has just started!
Cirno gave her students a positive integer $$$x$$$. As an assignment, her students need to find the minimum positive integer $$$y$$$, which satisfies the following two conditions:
$$$$$$x\ \texttt{and}\ y > 0$$$$$$ $$$$$$x\ \texttt{xor}\ y > 0$$$$$$
Where $$$\texttt{and}$$$ is the bitwise AND operation, and $$$\texttt{xor}$$$ is the bitwise XOR operation.
Among the students was Mystia, who was truly baffled by all these new operators. Please help her!
The first line of input contains a single integer $$$t$$$ ($$$1 \leq t \leq 10^3$$$) — the number of input test cases.
For each test case, the only line of input contains one integer $$$x$$$ ($$$1 \leq x \leq 2^{30}$$$).
For each test case, print a single integer — the minimum number of $$$y$$$.
71259161145141000000
3 3 1 1 17 2 64
Test case 1:
$$$1\; \texttt{and}\; 3=1>0$$$, $$$1\; \texttt{xor}\; 3=2>0$$$.
Test case 2:
$$$2\; \texttt{and}\; 3=2>0$$$, $$$2\; \texttt{xor}\; 3=1>0$$$.