Preparando MOJI
Consider an array $$$a$$$ of $$$n$$$ positive integers.
You may perform the following operation:
Let's call $$$f(a)$$$ the minimum number of operations needed to change array $$$a$$$ into an array of $$$n$$$ zeros.
Determine if for all permutations$$$^\dagger$$$ $$$b$$$ of $$$a$$$, $$$f(a) \leq f(b)$$$ is true.
$$$^\dagger$$$ An array $$$b$$$ is a permutation of an array $$$a$$$ if $$$b$$$ consists of the elements of $$$a$$$ in arbitrary order. For example, $$$[4,2,3,4]$$$ is a permutation of $$$[3,2,4,4]$$$ while $$$[1,2,2]$$$ is not a permutation of $$$[1,2,3]$$$.
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10^4$$$) — the number of test cases.
The first line of each test case contains a single integer $$$n$$$ ($$$1 \leq n \leq 10^5$$$) — the length of the array $$$a$$$.
The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$1 \le a_i \le 10^9$$$) — description of the array $$$a$$$.
It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$10^5$$$.
For each test case, print "YES" (without quotes) if for all permutations $$$b$$$ of $$$a$$$, $$$f(a) \leq f(b)$$$ is true, and "NO" (without quotes) otherwise.
You can output "YES" and "NO" in any case (for example, strings "yEs", "yes" and "Yes" will be recognized as a positive response).
342 3 5 431 2 343 1 3 2
YES YES NO
In the first test case, we can change all elements to $$$0$$$ in $$$5$$$ operations. It can be shown that no permutation of $$$[2, 3, 5, 4]$$$ requires less than $$$5$$$ operations to change all elements to $$$0$$$.
In the third test case, we need $$$5$$$ operations to change all elements to $$$0$$$, while $$$[2, 3, 3, 1]$$$ only needs $$$3$$$ operations.