Preparando MOJI

Count GCD

2000ms 262144K

Description:

You are given two integers $$$n$$$ and $$$m$$$ and an array $$$a$$$ of $$$n$$$ integers. For each $$$1 \le i \le n$$$ it holds that $$$1 \le a_i \le m$$$.

Your task is to count the number of different arrays $$$b$$$ of length $$$n$$$ such that:

  • $$$1 \le b_i \le m$$$ for each $$$1 \le i \le n$$$, and
  • $$$\gcd(b_1,b_2,b_3,...,b_i) = a_i$$$ for each $$$1 \le i \le n$$$.

Here $$$\gcd(a_1,a_2,\dots,a_i)$$$ denotes the greatest common divisor (GCD) of integers $$$a_1,a_2,\ldots,a_i$$$.

Since this number can be too large, print it modulo $$$998\,244\,353$$$.

Input:

Each test consist of multiple test cases. The first line contains a single integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of test cases follows.

The first line of each test case contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n \le 2 \cdot 10^5$$$, $$$1 \le m \le 10^9$$$) — the length of the array $$$a$$$ and the maximum possible value of the element.

The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le m$$$) — the elements of the array $$$a$$$.

It is guaranteed that the sum of $$$n$$$ across all test cases doesn't exceed $$$2 \cdot 10^5$$$.

Output:

For each test case, print a single integer — the number of different arrays satisfying the conditions above. Since this number can be large, print it modulo $$$998\,244\,353$$$.

Sample Input:

5
3 5
4 2 1
2 1
1 1
5 50
2 3 5 2 3
4 1000000000
60 30 1 1
2 1000000000
1000000000 2

Sample Output:

3
1
0
595458194
200000000

Note:

In the first test case, the possible arrays $$$b$$$ are:

  • $$$[4,2,1]$$$;
  • $$$[4,2,3]$$$;
  • $$$[4,2,5]$$$.

In the second test case, the only array satisfying the demands is $$$[1,1]$$$.

In the third test case, it can be proven no such array exists.

Informação

Codeforces

Provedor Codeforces

Código CF1750D

Tags

combinatoricsmathnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:33:27

Relacionados

Nada ainda