Preparando MOJI

Exponential Equation

1000ms 262144K

Description:

You are given an integer $$$n$$$.

Find any pair of integers $$$(x,y)$$$ ($$$1\leq x,y\leq n$$$) such that $$$x^y\cdot y+y^x\cdot x = n$$$.

Input:

The first line contains a single integer $$$t$$$ ($$$1\leq t\leq 10^4$$$) — the number of test cases.

Each test case contains one line with a single integer $$$n$$$ ($$$1\leq n\leq 10^9$$$).

Output:

For each test case, if possible, print two integers $$$x$$$ and $$$y$$$ ($$$1\leq x,y\leq n$$$). If there are multiple answers, print any.

Otherwise, print $$$-1$$$.

Sample Input:

5
3
7
42
31250
20732790

Sample Output:

-1
-1
2 3
5 5
3 13

Note:

In the third test case, $$$2^3 \cdot 3+3^2 \cdot 2 = 42$$$, so $$$(2,3),(3,2)$$$ will be considered as legal solutions.

In the fourth test case, $$$5^5 \cdot 5+5^5 \cdot 5 = 31250$$$, so $$$(5,5)$$$ is a legal solution.

Informação

Codeforces

Provedor Codeforces

Código CF1787A

Tags

constructive algorithmsmath

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:36:25

Relacionados

Nada ainda