Preparando MOJI

Number Factorization

1000ms 262144K

Description:

Given an integer $$$n$$$.

Consider all pairs of integer arrays $$$a$$$ and $$$p$$$ of the same length such that $$$n = \prod a_i^{p_i}$$$ (i.e. $$$a_1^{p_1}\cdot a_2^{p_2}\cdot\ldots$$$) ($$$a_i>1;p_i>0$$$) and $$$a_i$$$ is the product of some (possibly one) distinct prime numbers.

For example, for $$$n = 28 = 2^2\cdot 7^1 = 4^1 \cdot 7^1$$$ the array pair $$$a = [2, 7]$$$, $$$p = [2, 1]$$$ is correct, but the pair of arrays $$$a = [4, 7]$$$, $$$p = [1, 1]$$$ is not, because $$$4=2^2$$$ is a product of non-distinct prime numbers.

Your task is to find the maximum value of $$$\sum a_i \cdot p_i$$$ (i.e. $$$a_1\cdot p_1 + a_2\cdot p_2 + \ldots$$$) over all possible pairs of arrays $$$a$$$ and $$$p$$$. Note that you do not need to minimize or maximize the length of the arrays.

Input:

Each test contains multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases.

Each test case contains only one integer $$$n$$$ ($$$2 \le n \le 10^9$$$).

Output:

For each test case, print the maximum value of $$$\sum a_i \cdot p_i$$$.

Sample Input:

7
100
10
864
130056192
1000000000
2
999999018

Sample Output:

20
10
22
118
90
2
333333009

Note:

In the first test case, $$$100 = 10^2$$$ so that $$$a = [10]$$$, $$$p = [2]$$$ when $$$\sum a_i \cdot p_i$$$ hits the maximum value $$$10\cdot 2 = 20$$$. Also, $$$a = [100]$$$, $$$p = [1]$$$ does not work since $$$100$$$ is not made of distinct prime factors.

In the second test case, we can consider $$$10$$$ as $$$10^1$$$, so $$$a = [10]$$$, $$$p = [1]$$$. Notice that when $$$10 = 2^1\cdot 5^1$$$, $$$\sum a_i \cdot p_i = 7$$$.

Informação

Codeforces

Provedor Codeforces

Código CF1787B

Tags

greedymathnumber theory

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:36:25

Relacionados

Nada ainda