Preparando MOJI
Li Hua wants to solve a problem about $$$\varphi$$$ — Euler's totient function. Please recall that $$$\varphi(x)=\sum\limits_{i=1}^x[\gcd(i,x)=1]$$$.$$$^{\dagger,\ddagger}$$$
He has a sequence $$$a_1,a_2,\cdots,a_n$$$ and he wants to perform $$$m$$$ operations:
Suppose you were Li Hua, please solve this problem.
$$$^\dagger$$$ $$$\gcd(x,y)$$$ denotes the greatest common divisor (GCD) of integers $$$x$$$ and $$$y$$$.
$$$^\ddagger$$$ The notation $$$[\textrm{cond}]$$$ equals $$$1$$$ if the condition $$$\textrm{cond}$$$ is true, and $$$0$$$ otherwise.
The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1\le n,m\le 10^{5}$$$) — the number of elements in the array and the number of operations to process, respectively.
The second line contains $$$n$$$ integers $$$a_{1},a_{2},\cdots ,a_{n}$$$ ($$$1\le a_{i}\le 5\cdot 10^{6}$$$) — the elements of the array.
Next $$$m$$$ lines, each line contains three integers $$$t_{i},l_{i},r_{i}$$$ ($$$t_i\in\{1,2\},1\le l_i\le r_i\le n$$$) — the $$$i$$$-th operation.
For each "2 $$$l$$$ $$$r$$$", output the answer in an separate line.
5 4 8 1 6 3 7 2 1 5 2 3 4 1 1 3 2 3 4
10 2 1
Denote $$$\varphi^k(x)=\begin{cases}x,&k=0\\\varphi(\varphi^{k-1}(x)),&k > 0\end{cases}$$$.
At first, $$$a=[8,1,6,3,7]$$$.
To make sure $$$a_1=a_2=a_3=a_4=a_5$$$, we can change $$$a$$$ to $$$a'=[\varphi^3(8),\varphi^0(1),\varphi^2(6),\varphi^2(3),\varphi^3(7)]=[1,1,1,1,1]$$$, using $$$3+0+2+2+3=10$$$ changes.
To make sure $$$a_3=a_4$$$, we can change $$$a$$$ to $$$a'=[\varphi^0(8),\varphi^0(1),\varphi^1(6),\varphi^1(3),\varphi^0(7)]=[8,1,2,2,7]$$$, using $$$0+0+1+1+0=2$$$ changes.
After "1 $$$1$$$ $$$3$$$", $$$a$$$ is changed to $$$a=[\varphi^1(8),\varphi^1(1),\varphi^1(6),\varphi^0(3),\varphi^0(7)]=[4,1,2,3,7]$$$.
To make sure $$$a_3=a_4$$$, we can change $$$a$$$ to $$$a'=[\varphi^0(4),\varphi^0(1),\varphi^0(2),\varphi^1(3),\varphi^0(7)]=[4,1,2,2,7]$$$, using $$$0+0+0+1+0=1$$$ change.