Preparando MOJI
Initially you have a single pile with $$$n$$$ gold nuggets. In an operation you can do the following:
One possible move is to take a pile of size $$$6$$$ and split it into piles of sizes $$$2$$$ and $$$4$$$, which is valid since $$$4$$$ is twice as large as $$$2$$$.
The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 1000$$$) — the number of test cases.
The only line of each test case contains two integers $$$n$$$ and $$$m$$$ ($$$1 \leq n, m \leq 10^7$$$) — the starting and target pile sizes, respectively.
For each test case, output "YES" if you can make a pile of size exactly $$$m$$$, and "NO" otherwise.
You can output the answer in any case (for example, the strings "yEs", "yes", "Yes" and "YES" will be recognized as a positive answer).
116 49 44 218 2727 427 227 101 13 15 1746001 2984004
YES YES NO NO YES YES NO YES YES NO NO
The first test case is pictured in the statement. We can make a pile of size $$$4$$$.
In the second test case, we can perform the following operations: $$$\{\color{red}{9}\} \to \{\color{red}{6},3\} \to \{4,2,3\}$$$. The pile that is split apart is colored red before each operation.
In the third test case, we can't perform a single operation.
In the fourth test case, we can't end up with a larger pile than we started with.