Preparando MOJI

Combinatorics Problem

4000ms 1048576K

Description:

Recall that the binomial coefficient $$$\binom{x}{y}$$$ is calculated as follows ($$$x$$$ and $$$y$$$ are non-negative integers):

  • if $$$x < y$$$, then $$$\binom{x}{y} = 0$$$;
  • otherwise, $$$\binom{x}{y} = \frac{x!}{y! \cdot (x-y)!}$$$.

You are given an array $$$a_1, a_2, \dots, a_n$$$ and an integer $$$k$$$. You have to calculate a new array $$$b_1, b_2, \dots, b_n$$$, where

  • $$$b_1 = (\binom{1}{k} \cdot a_1) \bmod 998244353$$$;
  • $$$b_2 = (\binom{2}{k} \cdot a_1 + \binom{1}{k} \cdot a_2) \bmod 998244353$$$;
  • $$$b_3 = (\binom{3}{k} \cdot a_1 + \binom{2}{k} \cdot a_2 + \binom{1}{k} \cdot a_3) \bmod 998244353$$$, and so on.

Formally, $$$b_i = (\sum\limits_{j=1}^{i} \binom{i - j + 1}{k} \cdot a_j) \bmod 998244353$$$.

Note that the array is given in a modified way, and you have to output it in a modified way as well.

Input:

The only line of the input contains six integers $$$n$$$, $$$a_1$$$, $$$x$$$, $$$y$$$, $$$m$$$ and $$$k$$$ ($$$1 \le n \le 10^7$$$; $$$0 \le a_1, x, y < m$$$; $$$2 \le m \le 998244353$$$; $$$1 \le k \le 5$$$).

The array $$$[a_1, a_2, \dots, a_n]$$$ is generated as follows:

  • $$$a_1$$$ is given in the input;
  • for $$$2 \le i \le n$$$, $$$a_i = (a_{i-1} \cdot x + y) \bmod m$$$.

Output:

Since outputting up to $$$10^7$$$ integers might be too slow, you have to do the following:

Let $$$c_i = b_i \cdot i$$$ (without taking modulo $$$998244353$$$ after the multiplication). Print the integer $$$c_1 \oplus c_2 \oplus \dots \oplus c_n$$$, where $$$\oplus$$$ denotes the bitwise XOR operator.

Sample Input:

5 8 2 3 100 2

Sample Output:

1283

Informação

Codeforces

Provedor Codeforces

Código CF1832E

Tags

brute forcecombinatoricsdp

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:39:40

Relacionados

Nada ainda