Preparando MOJI

Zombies

4000ms 262144K

Description:

Polycarp plays a computer game in a post-apocalyptic setting. The zombies have taken over the world, and Polycarp with a small team of survivors is defending against hordes trying to invade their base. The zombies are invading for $$$x$$$ minutes starting from minute $$$0$$$. There are $$$n$$$ entrances to the base, and every minute one zombie attempts to enter through every entrance.

The survivors can defend the entrances against the zombies. There are two options:

  • manually — shoot the zombies coming through a certain entrance;
  • automatically — set up an electric fence on a certain entrance to fry the zombies.

If an entrance is defended either or both ways during some minute, no zombie goes through.

Every entrance is defended by a single dedicated survivor. The $$$i$$$-th entrance is defended manually from minute $$$l_i$$$ until minute $$$r_i$$$, non-inclusive — $$$[l_i, r_i)$$$.

There are $$$k$$$ generators that can be used to defend the entrances automatically. Every entrance should be connected to exactly one generator, but a generator can be connected to multiple entrances (or even none of them). Each generator will work for exactly $$$m$$$ consecutive minutes. Polycarp can choose when to power on each generator independently of each other, the $$$m$$$ minute long interval should be fully inside the $$$[0, x)$$$ time interval.

Polycarp is a weird gamer. He wants the game to be as difficult as possible for him. So he wants to connect each entrance to a generator and choose the time for each generator in such a way that as many zombies as possible enter the base. Please, help him to achieve that!

Input:

The first line contains four integers $$$n, k, x$$$ and $$$m$$$ ($$$1 \le k \le n \le 2000$$$; $$$1 \le m \le x \le 10^9$$$) — the number of entrances, the number of generators, the duration of the zombie invasion and the duration of all generators.

The $$$i$$$-th of the next $$$n$$$ lines contains two integers $$$l_i$$$ and $$$r_i$$$ ($$$0 \le l_i < r_i \le x$$$) — the time interval the $$$i$$$-th entrance is defended manually.

Output:

Print a single integer — the largest number of zombies that can enter the base after Polycarp connects each entrance to some generator and chooses the time for each generator.

Sample Input:

3 3 10 3
0 2
1 7
4 7

Sample Output:

18

Sample Input:

3 2 10 3
0 2
1 7
4 7

Sample Output:

18

Sample Input:

3 1 10 3
0 2
1 7
4 7

Sample Output:

16

Sample Input:

2 1 20 6
11 13
2 14

Sample Output:

22

Sample Input:

5 3 7 4
4 6
0 3
4 7
1 5
2 7

Sample Output:

14

Sample Input:

6 3 9 4
3 9
4 9
2 5
0 5
6 9
2 3

Sample Output:

26

Informação

Codeforces

Provedor Codeforces

Código CF1832F

Tags

binary searchdp

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:39:40

Relacionados

Nada ainda