Preparando MOJI

To Become Max

2000ms 262144K

Description:

You are given an array of integers $$$a$$$ of length $$$n$$$.

In one operation you:

  • Choose an index $$$i$$$ such that $$$1 \le i \le n - 1$$$ and $$$a_i \le a_{i + 1}$$$.
  • Increase $$$a_i$$$ by $$$1$$$.

Find the maximum possible value of $$$\max(a_1, a_2, \ldots a_n)$$$ that you can get after performing this operation at most $$$k$$$ times.

Input:

Each test contains multiple test cases. The first line of input contains a single integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers $$$n$$$ and $$$k$$$ ($$$2 \le n \le 1000$$$, $$$1 \le k \le 10^{8}$$$) — the length of the array $$$a$$$ and the maximum number of operations that can be performed.

The second line of each test case contains $$$n$$$ integers $$$a_1,a_2,\ldots,a_n$$$ ($$$1 \le a_i \le 10^{8}$$$) — the elements of the array $$$a$$$.

It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$1000$$$.

Output:

For each test case output a single integer — the maximum possible maximum of the array after performing at most $$$k$$$ operations.

Sample Input:

6
3 4
1 3 3
5 6
1 3 4 5 1
4 13
1 1 3 179
5 3
4 3 2 2 2
5 6
6 5 4 1 5
2 17
3 5

Sample Output:

4
7
179
5
7
6

Note:

In the first test case, one possible optimal sequence of operations is: $$$[\color{red}{1}, 3, 3] \rightarrow [2, \color{red}{3}, 3] \rightarrow [\color{red}{2}, 4, 3] \rightarrow [\color{red}{3}, 4, 3] \rightarrow [4, 4, 3]$$$.

In the second test case, one possible optimal sequence of operations is: $$$[1, \color{red}{3}, 4, 5, 1] \rightarrow [1, \color{red}{4}, 4, 5, 1] \rightarrow [1, 5, \color{red}{4}, 5, 1] \rightarrow [1, 5, \color{red}{5}, 5, 1] \rightarrow [1, \color{red}{5}, 6, 5, 1] \rightarrow [1, \color{red}{6}, 6, 5, 1] \rightarrow [1, 7, 6, 5, 1]$$$.

Informação

Codeforces

Provedor Codeforces

Código CF1856C

Tags

binary searchbrute forcedata structuresdp

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 10:41:14

Relacionados

Nada ainda