Preparando MOJI
Greg has an array a = a1, a2, ..., an and m operations. Each operation looks as: li, ri, di, (1 ≤ li ≤ ri ≤ n). To apply operation i to the array means to increase all array elements with numbers li, li + 1, ..., ri by value di.
Greg wrote down k queries on a piece of paper. Each query has the following form: xi, yi, (1 ≤ xi ≤ yi ≤ m). That means that one should apply operations with numbers xi, xi + 1, ..., yi to the array.
Now Greg is wondering, what the array a will be after all the queries are executed. Help Greg.
The first line contains integers n, m, k (1 ≤ n, m, k ≤ 105). The second line contains n integers: a1, a2, ..., an (0 ≤ ai ≤ 105) — the initial array.
Next m lines contain operations, the operation number i is written as three integers: li, ri, di, (1 ≤ li ≤ ri ≤ n), (0 ≤ di ≤ 105).
Next k lines contain the queries, the query number i is written as two integers: xi, yi, (1 ≤ xi ≤ yi ≤ m).
The numbers in the lines are separated by single spaces.
On a single line print n integers a1, a2, ..., an — the array after executing all the queries. Separate the printed numbers by spaces.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.
3 3 3
1 2 3
1 2 1
1 3 2
2 3 4
1 2
1 3
2 3
9 18 17
1 1 1
1
1 1 1
1 1
2
4 3 6
1 2 3 4
1 2 1
2 3 2
3 4 4
1 2
1 3
2 3
1 2
1 3
2 3
5 18 31 20