Preparando MOJI

Permanent

2000ms 524288K

Description:

Little X has solved the #P-complete problem in polynomial time recently. So he gives this task to you.

There is a special n × n matrix A, you should calculate its permanent modulo 1000000007 (109 + 7). The special property of matrix A is almost all its elements equal to 1. Only k elements have specified value.

You can find the definition of permanent at the link: https://en.wikipedia.org/wiki/Permanent

Input:

The first line contains two space-separated integers n, k (1 ≤ n ≤ 105; 1 ≤ k ≤ 50).

The next k lines contain the description of the matrix. The i-th line contains three space-separated integers xi, yi, wi (1 ≤ xi,  yi ≤  n; 0  ≤  wi  ≤ 109). These numbers denote that Axi, yi = wi. All the elements of the matrix except of the given elements are equal to 1.

It's guaranteed that all the positions (xi, yi) are distinct.

Output:

Print the permanent of the matrix modulo 1000000007 (109  +  7).

Sample Input:

3 1
1 1 2

Sample Output:

8

Sample Input:

10 10
3 3 367056794
6 2 124561273
1 3 46718146
6 9 415916869
10 5 985968336
3 1 526792265
1 4 386357058
10 4 349304187
2 7 102032499
3 6 502679075

Sample Output:

233333333

Informação

Codeforces

Provedor Codeforces

Código CF468E

Tags

dpgraph matchingsmathmeet-in-the-middle

Submetido 0

BOUA! 0

Taxa de BOUA's 0%

Datas 09/05/2023 08:53:39

Relacionados

Nada ainda