Preparando MOJI
Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.
ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A "^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.
Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way for a diner sitting in the row n + 1 to be served.
Given the initial table, there will be q events in order. There are two types of events:
Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.
The first line of input contains three integers n, m and q (1 ≤ n ≤ 105, 1 ≤ m ≤ 10, 1 ≤ q ≤ 105), separated by a space.
Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".
Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".
There are at most 10000 queries of "C" type.
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is (tx, ty).
If there is an infinite loop, you should output tx = ty = - 1.
2 2 3
>>
^^
A 2 1
C 1 2 <
A 2 1
1 3
-1 -1
4 5 7
><<^<
^<^^>
>>>^>
>^>>^
A 3 1
A 2 2
C 1 4 <
A 3 1
C 1 2 ^
A 3 1
A 2 2
0 4
-1 -1
-1 -1
0 2
0 2
For the first sample:
If the bread goes from (2, 1), it will go out of the table at (1, 3).
After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output is ( - 1, - 1).