Preparando MOJI
Misha has an array of n integers indexed by integers from 1 to n. Let's define palindrome degree of array a as the number of such index pairs (l, r)(1 ≤ l ≤ r ≤ n), that the elements from the l-th to the r-th one inclusive can be rearranged in such a way that the whole array will be a palindrome. In other words, pair (l, r) should meet the condition that after some rearranging of numbers on positions from l to r, inclusive (it is allowed not to rearrange the numbers at all), for any 1 ≤ i ≤ n following condition holds: a[i] = a[n - i + 1].
Your task is to find the palindrome degree of Misha's array.
The first line contains integer n (1 ≤ n ≤ 105).
The second line contains n positive integers a[i] (1 ≤ a[i] ≤ n), separated by spaces — the elements of Misha's array.
In a single line print the answer to the problem.
3
2 2 2
6
6
3 6 5 3 3 5
0
5
5 5 2 5 2
4
In the first sample test any possible pair (l, r) meets the condition.
In the third sample test following pairs (1, 3), (1, 4), (1, 5), (2, 5) meet the condition.